
Int. J. Solids Structures. 1973. Vol. 9. pp. 237 to 241. Pergamon Press. Printed in Great Britain

A NOTE ON THE CHEREPANOV CALCULATION OF
VISCOELASTIC FRACTURE

C. ATKINSONt and M. L. WILLIAMst

Imperial College of Science and Technology, 52-53 Princes Gate,
London S.W.?, England

RECENTLY Cherepanov [1,2] has discussed crack propagation in continuous media on
the basis of the thermodynamic power balance. The breadth of his treatment for many
types of materials provides an excellent example of this method of analysing fracture and
deserves careful study. In this note we only wish to comment upon one small segment [1]
of his general treatment in which there appears to be some confusion in the examples
presented for fracture in a 3-element model of a linear viscoelastic material (LVEM). In
his Part 4, Cherepanov derives the necessary condition for limiting equilibrium for a finite
length crack under conditions of plane strain and an incompressible LVEM. In terms of
the stress intensity factor N(t), which would equal p21/2 for the usual Griffith problem, it
is (Ref. [4.9]):

(1)

(3)

(2)

where in general N is found from crack tip stress conditions and stress boundary con­
ditions:

O'x+O'y = 2Nr-+ cos(ej2)

in the usual way. E -1 is an operator defined by (Ref. [4.2]):

E- 1f(t) = f~ Eo(t - e)f(e) de
where Eo is a creep function to be given for each material and y is the cohesive fracture
energy.

Having deduced the governing integro-differential equation (1) he then proceeded to
deduce N(t) for various finite element models of a LVEM whose stress-strain law is
represented by (Ref. [4.7]):

(4)

There appears to be a slight error in the solution which prevents a clear physical inter­
pretation of his results. Consider therefore his simplest example-for a Kelvin solid with
the constitutive relation (Ref. [4.15]):

(5)
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for which the corresponding form of (1), using (3) is:

I
t 1

N(t) 0 31] N(~) exp[ - W- 0] d~ = 4y/3n (6)

where ( = Il/IJ. The solution of this equation is obtained through the intermediate step of
reducing it to a differential equation, with the solution (Ref. [4.16]):

(7)

outside of an apparent misprint of the factor 2 in the exponential term No = N(to) and
to are arbitrary constants.

Since we are only interested in positive N(t), which is essentially the product of the
applied fracture stress and crack size, the solution of (6) gives:

in which:

N(t) { [ N;] } -tN* = 1- 1- N~ exp[ -2((t-to)]

N; = 4YIl/n = 4yE/3n

(8)

(9)

recognized as the critical Griffith stress to cause instability.
This expression (8) has two branches which Cherepanov plots for the case of the

general LVEM (3-element) solid; one branch for No> N * and the other for No < N *.
Cherepanov then presents a physical interpretation of these two cases. While (8) satisfies
the differential equation derived from (6) and also the condition N = No at t = to, these
latter constants do not appear to have been identified physically. If we now substitute (8)
back into (6), it will be a solution provided:

(10)

which means that if No < N* (the Griffith critical stress), then the time must be imaginary.
In other words, the branch of the solution for No < N* is not a solution of (6) for real to.
However, if No> N* a real solution will result as might be expected, i.e. the applied
stress exceeds the critical Griffith stress (based upon the minimum long time rubbery
modulus, Ee).

Although the above argument gives a possible interpretation of No and to it is based
on equation (6) being true for all time from t = O. This implies from a physical point of
view that fracture has begun at time t = 0 and (6) then describes the energy balance as the
crack continues to grow. Another way of viewing the problem which is discussed more
fully later is the following. The thermodynamically permissible relation:

N(t) I' 4y- N(r) exp( -W-r))dr .:5: -
31] 0 3n

(11)

is such that the crack will not grow if t < tJ , where inequality holds; if the equality holds
at t = tJ , tJ is the time to fracture. On the other hand if the equality does hold, then t = tJ ,

and tJ can be determined implicitly from (11). For times larger than tJ , i.e. t > tJ , after
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fracture, then the balance equation must be written:

N(t) {fl/ il }- N(r) exp[ -(t-r)] dr+ N(r) exp[ -W-r)] dr = 4y/3n
3~ 0 ~
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(12)

where N(r), r < tf and N(tf) are prescribed by the loading up to fracture and equation (12)
determines N(r), usually the crack length in terms of the applied loading, for t > tf .

Solving (12), together with the fracture initiation condition of (11) at t = tf , gives:

N(t) { [ N
2J }-tN* = 1- 1-

N
j exp[-2(t-tf )] (13)

where Nf = N(tf)' Equation (13) has two possible branches depending on whether
NJ > N; or NJ < N; in exactly the same way as considered by Cherepanov. So we have
now given an argument in which the No and to considered by Cherepanov could be
associated with Nf and tf as defined here. To~1est whether both these conditions are possible
is more difficult than before, where we effectively considered the case tf = 0. It is clear that
solutions with N[ > 4YJ1./n are possible since N equal to a constant in (11) gives an
NJ > N;. For N f < N; however, one can show that there can exist no function N(r) for
which (11) is true with the equality sign at t = tf without violating the inequality condition
of (11) for times t < tf . So we have proved for this more sophisticated case that no solution
to (12) with conditions (11) exists if NJ < N;.

Because the reference time and intensity factor did appear originally without much
further designation, it is constructive to re-examine the fundamental equation for criticality,
i.e. (1). It is possible to do so in a rather general sense, not restricted to a particular n­
element model, as was used by Williams [3] in his thermodynamic power balance analysis
of the spherical or cylindrical flaw model of a crack in a LVEM. Writing (1) in the equiv­
alent form:

(14)

wherein Dcrp(t) is the creep compliance and DcriO) == Dg by definition. Equation (14) is
thermodynamically permissible, up to the fracture time tf , but in particular holds at the
fracture initiation time tf . In this way, one recognizes that of the two physical parameters
making up the stress intensity factor for the assumed stress boundary value, i.e. applied
stress p(t) and the crack length 2/(t), (N2(t) = p2(t)/(t)/2 Ref. [4.17]), the crack length is of
constant length 1= 10 for t < tf . One can now proceed to determine tf for a specified
loading in a LVEM. The simplest example is the case of a step-function loading p(t)
= PoH(t) such that N is also a constant which as t ~ tf becomes the critical value Ncr'
Thus from (10):

(15)

or

(16)
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as the implicit equation defining the time required to fracture a finite length crack, 210 ,

subjected to a uniform stress Per in a LVEM characterized by a creep compliance Derp(t).
As in the spherical-cylindrical flaw case, no fracture is possible in finite time if:

N (t -> ) < J[ 4y/3n l = J(4EeY) ==er 00 D ( ) 3 N*erp 00 n
(17)

as described in conjunction with (9), in which the long time, rubbery modulus is defined
through De = E; I. Indeed, the entire range of possible fracture initiation times 0 ~ tf ~ 00

fall within the range controlled by Dg ~ Deritf) ~ De. In this constant applied stress
example,

(18a)

(l8b)rubbery Griffith limit

brittle Griffith limit- J( 8 EgY).Per. = Per(tf -> 0) = 3n t; ,

J( 8 EeY)
Pere == Per(tf -> Xi) = 3n t; ;

where this crack initiation time, tf , could now be associated with the Cherepanov value of
to if desired.

Having now identified this crack initiation time, tf , which if one desired could now be
identified with the Cherepanov to value (and prior to which no physically realizable crack
velocity is possible-the a(t) = 0 solution in Ref. [37]), it is possible to evaluate the crack
velocity after initiation t ~ tf by further application of (14), i.e.

N(t){D N(t)+f.tfaDerp(t-~)N(~)d~+f.taDerp(t-~)N(~)d~}= 4/3 (19)
g 0 a(t-~) tf a(t-~) Y n

which is now the determining equation for N(t) following the initiation. For example, and
pursuing the same problem as 'before with say Per. < Per(t > tf ) < Pere' but now with a
change in crack size l(t > tf)' (19) becomes an integro-differential equation for determining
a(t) and subsequently the crack velocity a(t).

While we have been unable to solve for a(t) in closed form for an arbitrary LVEM,
use of the same 3-element model as Cherepanov's leads directly to the conclusion that no
stable velocity of crack propagation after fracture initiation is possible for a uniform
stress (as also deduced by Cherepanov), but further, can exist only for monotonic de­
creasing loads after fracture. In particular, one can deduce the required decay in applied
loading after initiation in order to produce a stable or steady state crack propagation
velocity, e.g. finding A. in the loading function in such physically interesting cases as [4].

p(t) = Po(t/tf):O ~ t ~ tf

= Po[ -A.(t-tf)]:t ~ t f

(20a)

(20b)

in order that a(t > tf ) is finite.
It is not the intent in)his short note to elaborate upon these latter points, but a final

important one does deserve mention. The basic paper [1] as well as much related research
[2, 3] has been developed assuming that the specific fracture energy, Y, is time independent.
Because this assumption, usually involved for analytical simplicity, is apparently far from
true [5], it would be well for further extensions of fracture theory to account explicitly for
this time-temperature dependence.
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